Interspecies differences in virus uptake versus cardiac function of the coxsackievirus and adenovirus receptor.

نویسندگان

  • Fabian Freiberg
  • Martina Sauter
  • Sandra Pinkert
  • Thirupugal Govindarajan
  • Joanna Kaldrack
  • Meghna Thakkar
  • Henry Fechner
  • Karin Klingel
  • Michael Gotthardt
چکیده

UNLABELLED The coxsackievirus and adenovirus receptor (CAR) is a cell contact protein with an important role in virus uptake. Its extracellular immunoglobulin domains mediate the binding to coxsackievirus and adenovirus as well as homophilic and heterophilic interactions between cells. The cytoplasmic tail links CAR to the cytoskeleton and intracellular signaling cascades. In the heart, CAR is crucial for embryonic development, electrophysiology, and coxsackievirus B infection. Noncardiac functions are less well understood, in part due to the lack of suitable animal models. Here, we generated a transgenic mouse that rescued the otherwise embryonic-lethal CAR knockout (KO) phenotype by expressing chicken CAR exclusively in the heart. Using this rescue model, we addressed interspecies differences in coxsackievirus uptake and noncardiac functions of CAR. Survival of the noncardiac CAR KO (ncKO) mouse indicates an essential role for CAR in the developing heart but not in other tissues. In adult animals, cardiac activity was normal, suggesting that chicken CAR can replace the physiological functions of mouse CAR in the cardiomyocyte. However, chicken CAR did not mediate virus entry in vivo, so that hearts expressing chicken instead of mouse CAR were protected from infection and myocarditis. Comparison of sequence homology and modeling of the D1 domain indicate differences between mammalian and chicken CAR that relate to the sites important for virus binding but not those involved in homodimerization. Thus, CAR-directed anticoxsackievirus therapy with only minor adverse effects in noncardiac tissue could be further improved by selectively targeting the virus-host interaction while maintaining cardiac function. IMPORTANCE Coxsackievirus B3 (CVB3) is one of the most common human pathogens causing myocarditis. Its receptor, the coxsackievirus and adenovirus receptor (CAR), not only mediates virus uptake but also relates to cytoskeletal organization and intracellular signaling. Animals without CAR die prenatally with major cardiac malformations. In the adult heart, CAR is important for virus entry and electrical conduction, but its nonmuscle functions are largely unknown. Here, we show that chicken CAR expression exclusively in the heart can rescue the otherwise embryonic-lethal CAR knockout phenotype but does not support CVB3 infection of adult cardiomyocytes. Our findings have implications for the evolution of virus-host versus physiological interactions involving CAR and could help to improve future coxsackievirus-directed therapies inhibiting virus replication while maintaining CAR's cellular functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Coxsackievirus and Adenovirus Receptor (CAR) as a therapeutic target in cardiac disease

The coxsackievirus and adenovirus receptor (CAR) is a type I transmembrane protein involved in virus uptake and the maintenance of cell-cell contacts. It is predominantly expressed in the developing brain and heart, and re-induced upon cardiac remodeling in heart disease. Coxsackievirus B3 (CVB3) infections are frequent causes of human acute myocarditis, often resulting in chronic cardiomyopath...

متن کامل

The tight junction protein CAR regulates cardiac conduction and cell–cell communication

The Coxsackievirus-adenovirus receptor (CAR) is known for its role in virus uptake and as a protein of the tight junction. It is predominantly expressed in the developing brain and heart and reinduced upon cardiac remodeling in heart disease. So far, the physiological functions of CAR in the adult heart are largely unknown. We have generated a heart-specific inducible CAR knockout (KO) and foun...

متن کامل

Prevention of cardiac dysfunction in acute coxsackievirus B3 cardiomyopathy by inducible expression of a soluble coxsackievirus-adenovirus receptor.

BACKGROUND Group B coxsackieviruses (CVBs) are the prototypical agents of acute myocarditis and chronic dilated cardiomyopathy, but an effective targeted therapy is still not available. Here, we analyze the therapeutic potential of a soluble (s) virus receptor molecule against CVB3 myocarditis using a gene therapy approach. METHODS AND RESULTS We generated an inducible adenoviral vector (AdG1...

متن کامل

Heart Failure Regulatory T Cells Protect Mice Against Coxsackievirus-Induced Myocarditis Through the Transforming Growth Factor –Coxsackie-Adenovirus Receptor Pathway

Background—Coxsackievirus B3 infection is an excellent model of human myocarditis and dilated cardiomyopathy. Cardiac injury is caused either by a direct cytopathic effect of the virus or through immune-mediated mechanisms. Regulatory T cells (Tregs) play an important role in the negative modulation of host immune responses and set the threshold of autoimmune activation. This study was designed...

متن کامل

Bosentan enhances viral load via endothelin-1 receptor type-A-mediated p38 mitogen-activated protein kinase activation while improving cardiac function during coxsackievirus-induced myocarditis.

Reduced cardiac output is one of the consequences of myocarditis. Bosentan, an endothelin-1 receptor (ET1R) antagonist, could be useful to reduce cardiac afterload, preserving cardiac output. In this study, we investigated the potential therapeutic use of bosentan in an animal model of viral myocarditis. Using a mouse model of coxsackievirus B3 (CVB3)-induced myocarditis, we demonstrated preser...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 88 13  شماره 

صفحات  -

تاریخ انتشار 2014